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C. Normalization Constants

In order to expand the fields of sources in the presence of the

slotted screen, the eigenmodes must be normalized. This can be

accomplished in a number of ways [3]. Only the final results are

stated.

Letthetransverse electric field of aTM, mode corresponding to

the rrrth radial solution and spectral number kt be denoted by

E;; (m, h) = Vt@;O(h, coshp, cosfl)

and the electric field of a TE, mode corresponding to the m th radial

solution and spectral number kt by

E~:[rn,lt) = z X ~,~;;O(h, COSll Lt, COS8).

Upon defining the inner product over the transverse cross-section S

as follows

it can

(A, B)=//A. B d.
s

be shown that the following equations are true

(E; M(m.h,), E;M(n, h,))

= ;ktl Jf; (hl)[JoL(hl.l)’ + No; (hl,l)’]

x 6(k*l — ktz)l$n,n

(E;~(?~t,hl),E;~(n,kz))

= ;ktl.VI; (hl)[Jo:(k l.1)]–26(ktl – ktz)&nn

(E;~(n/, hi), E; E(n, h,))

= ~k~~.V1~. (h~)[Je~(h~.l)2 +lVen, (h~.1)2]

x 6(ktl– kt2)fin, n

(E;~(nl, h,), E;~(n. h2))

= ~~tl~~~(~l)[Je~(kl,l)]–26(ktl– k)bm.

where 6(. ) is the delta function, 8“,,, is the Kronecker symbol, and
normalization constants M%” are defined in [4].

D. Characteristic Modes for the Slot

The characteristic slot-field modes deftned in [2] can be shown

to correspond to the tangential field distributions of the eigenmode

solutions stated above, evaluated at u = O. For example, the

characteristic TE, aperture modes for a given value of kt are obtained

as

where the substitution ~ a cos 6’ = .r was made. Numerical evaluation

of Se n, ( h. 2x/n) can be carried out using a number of software

packages, e.g., [7].

The characteristic values, denoted by b~ ( kt ) in [2] (\ ~ ( k~) in

[1]) can be explicitly written as follows

bm, (kt) =
IVem(ir,l)

.Jem(h, 1)

The approximate b,,, ( kt ) values derived in [2] represent the first terms

in the series expansion of the preceding equation for small values of

k.
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Electrostatic Potential Through a Circular

Aperture in a Thick Conducting Plane

Jung H. Lee and Hyo J. Eom

Abstract—The electrostatic potential through a circular aperture in a

thick conducting plane is examined. The Hankel transform is applied to

express the scattered potential in the spectral domain and the honnd-
ary conditions are enforced to obtain simultaneous equations for the

transmitted potential inside the thick conducting plane. The simultaneous
equations are solved to represent the transmitted and scattered potentials
in series forms. Nnmerical computations are performed to illustrate the
behavior of polarizability in terms of the aperture size. The nnmerical
comparisons to other available data show excellent agreement. The
presented series solution is fast convergent so that it is very efficient for

numerical computation.

I. INTRODUCTION

Electrostatic potential through a circular aperture in a thin conduct-

ing plane has been of considerable interest in the area of microwaves

[1]-[3]. The potential penetration through a circular aperture in a thick

conducting plane has been studied with the variational technique [4].

Although the solution in [4] fairly well agrees with the measurement

data, it is also of interest to obtain another rigorous exact solution.

The motivation of the present study is to develop such a solution

by using the Hankel transform and the mode-matching used in [5].

The solution presented in this paper is in simple convergent series

so that it is not only exact but also computationally very efficient.

The organization of the paper is as follows: In the next section. we

represent the scattered potential in the spectral domain and perform

the numerical calculations. A brief summary is given in Conclusion.

II. POTENTIAL REPRESENTATIONSAND

BOUNDARY CONDITIONS

In region (I) (L > O), an incident potential T’ impinges on a

circular aperture (radius: a, depth: d) in a thick conducting plane at

zero potential ‘(see Fig. 1). Regions (II) ( –d < : < 0. r- < n) and

(III) (; < –d) denote the circular aperture and the lossless half-

space, respectively. In region (I) the total potential consists of the
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x
(2.9) where $,,P is the Kronecker delta. Substituting (2.7) into (2.9),

1

1

I

multiplying (2,9)by Jo(kl, r)r, (p = 1,2, 3..) and integrating with

d @
respect to r from O to ({

Region (1) aJl(kJ, a) -

k,,
- ~(bl sinh,,td+ c, coshknd)cv,l,lr,P

.=1

Region (IH) Since the integrand of (2.12) is fast-decaying as < goes to infinity,

the numerical evaluation of (2.12) is very efficient. Similarly from

Fig. 1. Problem geometry. the boundary conditions at z = –d we obtain

incident and scattered potentials as ~ ~1 ??,,Itp = ;b,,kl,[.l, (k,,{ )]2. (2.13)

@7(T, z) = 2 (2.1)
n=l

(O S(r’, z)= /-*’( <)Jo(cr)e-’z(<i( (2,2) From (2.10) and (2.13), we obtain the matrix equation for r,, and h,,

Jo

where Jo(. ) is the zeroth order Bessel function and

~S(c) is the Hankel transform of @’(ri O) defined as [:: :x] =M (2.14)

c~s(<) = JO= Qs(/.O)Jcl((r)rdr. The properties of the Hankel

transform are summarized in [6]. In region (II) the total potential
where D and C are column vectors consisting of elements b,, and

is given by the modal series with coefficients b,, and c,, where the
c,,, respectively, and ~L.’~J. Yj.’JI, and r elements are

In region (111) (he total transmitted potential is + ~k,, sinh(~,,d)[l~ (L,, (()]26,,P (2. 16)

To determine unknown coefficients b,, and c,,, it is necessary ds.1,,,,, = I—Oi?j, ,,,3 (2.18)

to enforce the boundary conditions which require continuity of the [LJl(kpc/)

potential and its normal derivative across the aperture
-(1J = ~ (2.19)

P

@’(riO)+@’ (r,())= @[{(7,0), r<~{ (2.5)

= (), r > CL. (2.6)

Applying the Hankel transform to (2.5) and (2.6)

.

6s(<)= ~(1],, sillllk,, d+c,, coshk,, d)
.=1

[

–d’,lJo(((/)J1 (k,, a)
x <2 _~;

1
(2.7)

Second

~ @’(T.. ) + i5’(T, Z)]z=o = ~[@d(r,,z)],=O.~z [ r<a. (2.8)

Utilizing (2.1)–(2.3), (2.8) may be rewritten as

Solving (2.14) for B and C, we have

Note that the electric polarizability defined in [3] is

/
y(z) E 4?i “@d(r.Z)r’(ir (2.21)

o
.

—. 47rcL ~[b,, sinh k,, (z + d)
“,=1

+ c,, Coshk,, (: + d)] Jl(k,, (L)/k,t. (2.22)

m

1 – / ‘5S(OJO(<7’)(’(J( Three limiting cases are:
J O

= ~ [b,, CWShkr,d+ ,,sirllkr,d]k,,lo( k,), r< a. (2.9]
1) When d = O (thin circular aperture), B = ~ VF1 r and

C = ~w.jlr;
,?=1 2) When region (III) consists of a perfect-conducting plane at

It is possible to form a linear system for b,, and c,, by applying an zero potential (circular pit), D = ?2;l r, C’ = ();

orthogonal property ,~~ .~o ( k,, r) Jo ( kp r )rdr = $[11 (’!1,(7)]’6,,,, to 3) When d = cc (infinite circular pipe), D = ~I17u’ r. C’ = D.
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TABLE I

CONVERGENCERATE OF Ibnl AND Ic.1 VERSUS n

FOR THE THICK CIRCULAR APERTURE WITHa = 2

d/a 0.1 05 1

n llrn\ Icnl Ibnl Icn/ ]bnl Icnl

1 0.525710 ] 0.632149 0202444 [ O 237521 0060972 \ O 071151

2 II 0.103520 ] 0.170552 II 0.004229 \ O 025546 II 0.002128 ] 0.004010 /
U

3 0031176 0.079210 0005764 0.009175 0.002008 0002163

4 0.008332 0.045435 0.005445 0.005917 0001622 0.001624

5 0.000582 0.029456 0004510 0.004582 0.001296 0001296

6 // 0004330 I ‘0.020786 II O 003761 I O 003773 II O 001072 I 0.001072

x’(z)
-6

11

i

-8

1-”-”:

x’(–d,) (circular aperture)

— — + X’(O) (circular aperture)

-10
—: x’(0) (circular pit)

00000: Gluckstern[4]
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Fig. 2. Normalized polarizability asafunction ofaperture thickness.
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Flg.3. Equipotential contour when d/a = 0.25

In order to show the convergence rate of our series solution, we

tabulate Ihnl and lc~l in Table I for the thick circular aperture,

demonstrating that our series solution converges rapidly. To check

the accuracy of our formulation, we plot the normalized polarizability

Y’(2) = ln[3x(~)/(8a3)] for the circular aperture at z = O.–d in
Fig. 2,thusconfirming excellent agreements between out results and

[4]. Note that the normalized polarizability is independent of a. We

usert = 6in(2.20) toachieve thenumerical convergence. The typical

CPUtime forsolving (2.20) isabout45 msecona Sun-workstation

model SPARC-20. Our computation shows that ~’(0) for the circular

pipe is approximately –0.86. Note that ,x’(O) for the circular pit

approaches that for the circular aperture within 1% error when

d/a > 0.5. This is because the bottom metallic surface at z = –d

has a diminishing effect of the polarizability since it is receding from
the aperture. This is also evident in the fact that the polarizability at
~= – d for the circular aperture becomes increasingly small as d

increases. Also note that X’(O) for the circular pit approaches O when

d/a ~ O since it is a limiting case of a nonexistent aperture. For the

sake of illustration, we show the equipotential contour for the thick

aperture in Fig. 3 which depicts how the incident potential penetrates

into a thick circular aperture with d/a = 0.25.

III. CONCLUSION

The electrostatic potential distribution through a thick circular

aperture is investigated. A simple series solution is obtained using the

Hankel transform and the polarizability for the aperture is numerically

evaluated. The presented solution converges rapidly so that it is very

efficient for numerical computation.
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