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C. Normalization Constants

In order to expand the fields of sources in the presence of the
slotted screen, the eigenmodes must be normalized. This can be
accomplished in a number of ways [3]. Only the final results are
stated.

Let the transverse electric field of a TM. mode corresponding to
the mth radial solution and spectral number k¢ be denoted by

ETy(m, h) = V877 (h, cosh g, cos t)

and the electric field of a TE. mode corresponding to the mth radial
solution and spectral number k; by

ETp(m.h) =2 x Vi ¥;,°(h,cosh pt, cos §).

Upon defining the inner product over the transverse cross-section S

as follows
(A,B)://A-B ds
s

it can be shown that the following equations are true

(Em(m.h1) Bty (n.ha))
= Gk M (Ao hs. 1)” + Nop (k1 1)’]
X 0(ke1 — kt2)0mn
(Bfmim. h1). Efy(n. ha))

= Tl ME (ki) [Jom (k1. 1) 26(ker — Ee2)bumn

2
<E'EI‘E(rnv hl)ﬂE'fI‘E(n“ h2)>
= gkthfn(hl)[Jem(hl.l)z + Nem(hi.1)?]

X é(ktl - kTZ)émn
(Bfr(m, h1), BYg(n. h2))

= %kﬂzu;(hl)[gfem(hh1)]’26(ku — ki2)6mn
where 6(-) is the delta function, 6,,, is the Kronecker symbol, and
normalization constants M,.° are defined in [4].

D. Characteristic Modes for the Slot

The characteristic slot-field modes defined in [2] can be shown
to correspond to the tangential field distributions of the eigenmode
solutions stated above, evaluated at p© = 0. For example, the
characteristic TE . aperture modes for a given value of %, are obtained
as

Sen h,VQJ:/u) o

( a

where the substitution %a cos ¥ = & was made. Numerical evaluation
of Se,,(h.2x/a) can be carried out using a number of software
packages, e.g., [7].

The characteristic values, denoted by b, (k) in [2] (\m(k¢) in
[1]) can be explicitely written as follows

_ New(h,1)
buslhe) = Jem(h, 1)

Efg(m.h.l,z) =% <u<

N R

The approximate b, (k) values derived in [2] represent the first terms
in the series expansion of the preceding equation for small values of
h.
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Electrostatic Potential Through a Circular
Aperture in a Thick Conducting Plane

Jung H. Lee and Hyo J. Eom

Abstract—The electrostatic potential through a circular aperture in a
thick conducting plane is examined. The Hankel transform is applied to
express the scattered potential in the spectral domain and the bound-
ary conditions are enforced to obtain simultaneous equations for the
transmitted potential inside the thick conducting plane. The simultaneous
equations are solved to represent the transmitted and scattered potentials
in series forms. Numerical computations are performed to illustrate the
behavior of polarizability in terms of the aperture size. The numerical
comparisons to other available data show excellent agreement. The
presented series solution is fast convergent so that it is very efficient for
numerical computation.

I. INTRODUCTION

Electrostatic potential through a circular aperture in a thin conduct-
ing plane has been of considerable interest in the area of microwaves
[11-[3]. The potential penetration through a circular aperture in a thick
conducting plane has been studied with the variational technique [4].
Although the solution in [4] fairly well agrees with the measurement
data, it is also of interest to obtain another rigorous exact solution.
The motivation of the present study is to develop such a solution
by using the Hankel transform and the mode-matching used in [S].
The solution presented in this paper is in simple convergent series
so that it iS not only exact but also computationally very efficient.
The organization of the paper is as follows: In the next section. we
represent the scattered potential in the spectral domain and perform
the numerical calculations. A brief summary is given in Conclusion.

II. POTENTIAL REPRESENTATIONS AND
BOUNDARY CONDITIONS

In region (I) (= > 0), an incident potential ®* impinges on a
circular aperture (radius: a, depth: 4) in a thick conducting plane at
zero potential (see Fig. 1). Regions (II) (—d < =z < 0.r < a) and
) (= < —d) denote the circular aperture and the lossless half-
space, respectively. In region (I) the total potential consists of the
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Fig. 1. Problem geometry.

incident and scattered potentials as

®'(r,z) =z 2.1)
@%nﬂ:/'®70%@mw“wc 22)

0
\yhere Jo(++-) is the zeroth order Bessel function and
<I>‘”(() is the Hankel transform of &°(r,0) defined as
= [0 ®°(r,0)Jo(Cr)rdr. The properties of the Hankel

transform are @ummarlzed in [6]. In region (II) the total potential
is given by the modal series with coefficients b,, and ¢, where the
discrete radial modes are determined by Jo(kna) = 0

d(r, 2)

= Z[b,,, sinh &y, (

s+ d)+ en cosh by (2 + d)]Jo(knr). (2.3)
n=I1
In region (III) the total transmitted potential is
Pl(r.z) = / DO To(Cryet D cac. (2.4)
0

To determine unknown coefficients b, and c,, it is necessary
to enforce the boundary conditions which require continuity of the
potential and its normal derivative across the aperture

B'(r,0) + &°(r,0) = 3"(,0), r<a 2.5)
=0, 7> a. (2.6)
Applying the Hankel transform to (2.5) and (2.6)
2°(¢) = Y (bysinh knd -+ ¢y cosh knd)
n=1}
akynJo(Ca)Jr( kna)
g [ Gk @D
Second
i s 1é]
'0—~[¢(7 ?) + &° (7*_/ Z)]z:() = E[(I)d(l“ 2,)]2:0_’ r < a. (28)

Utilizing (2.1)~(2.3), (2.8) may be rewritten as

1—/®®%ohmwﬁa

4]
:Z[b” cosh knd + ¢, sinh k, dkn Jo(kyr), r < a. (2.9)
n=1

it is possible to form a linear system for b,, and ¢, by applying an
a 2 =
orthogonal property fo Jo(knr)Jo(kyr)rdr = %[Jl(kpa,)]zénp to

(2.9) where 6,,, is the Kronecker delta. Substituting (2.7) into (2.9),
multiplying (2.9) by Jo(kpr)r, {(p = 1,2,3, ) and integrating with
respect to » from 0 to «

a_t]# - i(bn sinh knd + cn coshknd)anpInp
P n=1
a’ 2 .
= ?lx:p[(]l (kpa)]®(by coshk,d + ¢, sinh k. d) (2.10)
where
Oy = @ ke b1 (kpa) ) (B a) (2.11)
oo 9 N2
Ly, = /O P_LZE‘)E‘C)—E_F(M (2.12)

Since the integrand of (2.12) is fast-decaying as ¢ goes to infinity,
the numerical evaluation of (2.12) is very efficient. Similarly from
the boundary conditions at z = —d we obtain

o0

Cnnplp = (2.13)

2
a P
5 bpko[ 1 (ypa N

n=1

From (2.10) and (2.13), we obtain the matrix equation for ¢, and b,

v, O, |B|_|T

Uy W, (C]| 7|0
where B and C' are column vectors consisting of elements b,, and
cn, respectively, and ¥, ¥,, ¥3. ¥y, and T elements are

(2.14)

Unp = Oy sinh(k, d) oy
2

+ %L cosh(Fen d)[ T (kna)] 8 (2.15)
Yo mp = Qnp cosh(knd)lnp
2
+ %A sinh (ko d)[J1 (Fpa)}2 60y (2.16)
a? 5
/l//)i3.71]) = 7k71,[J1(k771 (1)]‘5717, (217)
L/’/an = *()(’n,p-[np (218)
Ji(k
= L) 1; p®). (2.19)
P
Solving (2.14) for B and C, we have
B = (0,9, 07" — ¥,) 0y, T
B . (2.20)
C=—(¥,T,¥; —¥,) T.
Note that the electric polarizability defined in [3] is
= 47‘/ (7, 2 rdr 2.21)
= 4ma }:[Z)n sinh k(2 + d)
n=1
+ ¢pcosh k(s + D) (kna)/kn.  (2.22)
Three limiting casesk are:
1) When d = 0 (thin circular aperture), B = 1¥7'T and
C = L¥;'T,

2) When region (IlI) consists of a perfect-conducting plane at
zero potential (circular pit), B = ¥, ', C =
3) When d = o (infinite circular pipe), B = %‘I/f] r,C =B,
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TABLE 1
CONVERGENCE RATE OF |by,| AND |cr,| VERSUS n
FOR THE THick CIRCULAR APERTURE WITH ¢ = 2

dfa 0.1 05 1
[ I O T Y

0.525710 | 0.632149 || 0 202444 | 0 237521 || 0 060972 | 0 071151
0.103520 | 0.170552 || 0.004229 | 0 025546 | 0.002128 | 0.004010
0031176} 0.079210 || 0 005764 | 0.009175 1 0.002008 | 0 002163
0.008332 | 0.045435 || 0.005445%5 | 0.005917 || 0 001622 | 0.001624
0.000582 | 0.029456 || 0 004510 | 0.004582 || 0.001296 | 0 001296
0 004330 [ 0.020786 || 0 003761 | 0 003773 || 0 001072 | 0.001072

AW =S

S

— « —1 x'{—d) (circular aperture) |
— — = x'(0) (circular aperture)
: X/ (0) (cireular pit)
00000 Gluckstern[4]
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d/a

Fig. 2. Normalized polarizability as a function of aperture thickness.

Fig. 3. Equipotential contour when d/a = 0.25.

In order to show the convergence rate of our series solution, we
tabulate |b,| and |c,| in Table I for the thick circular aperture,
demonstrating that our series solution converges rapidly. To check
the accuracy of our formulation, we plot the normalized polarizability
X'(2) = In[3x(5)/(8a*)] for the circular aperture at = = 0, —d in
Fig. 2, thus confirming excellent agreements between out results and
[4]. Note that the normalized polarizability is independent of a. We
use n = 6 in (2.20) to achieve the numerical convergence. The typical
CPU time for solving (2.20) is about 45 msec on a Sun-workstation
model SPARC-20. Our computation shows that \'(0) for the circular
pipe is approximately —0.86. Note that x'(0) for the circular pit
approaches that for the circular aperture within 1% error when

d/a > 0.5. This is because the bottom metallic surface at z = —d
has a diminishing effect of the polarizability since it is receding from
the aperture. This is also evident in the fact that the polarizability at
z = —d for the circular aperture becomes increasingly small as d
increases. Also note that %' (0) for the circular pit approaches 0 when
d/a — 0 since it is a limiting case of a nonexistent aperture. For the
sake of illustration, we show the equipotential contour for the thick
aperture in Fig. 3 which depicts how the incident potential penetrates
into a thick circular aperture with d/a = 0.25.

III. CONCLUSION

The electrostatic potential distribution through a thick circular
aperture is investigated. A simple series solution is obtained using the
Hankel transform and the polarizability for the aperture is numerically
evaluated. The presented solution converges rapidly so that it is very
efficient for numerical computation.
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